
Distributed Version Control
Systems

CS 595 Technical Presentation
Wednesday, May 4, 2011
3:10pm

Thesis

Distributed version control system (DVCS)
such as git have many advantages that make
them much more scalable than centralized
version control systems (CVCS) such as
Subversion.

Outline

 Why version control?

 Version control system concepts

 Version control system models
 Centralized (CVCS)

 Distributed (DVCS)

 Case Study
 CVCS to DVCS migrations

 A class submission system for group projects

 Conclusion

Development Teams

 Example: Imperial Software, Inc.

 Problem:

 Bugs cause code changes

 Code changes cause other problems

Effects of Code Changes

 “The amount of space to store the source
code…may be several times that needed for any
particular version.”

 “Fixes made to one version of a module
sometimes fail to get made to other versions.”

 “When changes occur it is difficult to tell exactly
what changed and when.”

 “When a customer has a problem it is hard to
figure out what version he has.”

(Rochkind 1975)

Software Maintainers

 Example: Linus Torvalds

 Problems: (Torvalds 2007)

 Separating good changes from bad changes

 Merging other people’s changes

 Release management

 Need guarantee that code is valid/trustworthy

Outline

 Why version control?

 Version control system concepts

 Version control system models
 Centralized (CVCS)

 Distributed (DVCS)

 Case Study
 CVCS to DVCS migrations

 A class submission system for group projects

 Conclusion

Features provided by SCCS

 Storage

 Protection

 Identification

 Documentation

(Rochkind 1975)

Modern VCS Features

 Branches

 Independent subprojects

 Release branches vs. Feature branches

 Merging

 Re-integrating a branch

(O’Sullivan 2009)

A B

C E

D F

G

Outline

 Why version control?

 Version control system concepts

 Version control system models
 Centralized (CVCS)

 Distributed (DVCS)

 Case Study
 CVCS to DVCS migrations

 A class submission system for group projects

 Conclusion

Centralized VCS (CVCS)

Image source: http://betterexplained.com/wp-content/uploads/version_control/distributed/centralized_example.png

http://betterexplained.com/wp-content/uploads/version_control/distributed/centralized_example.png
http://betterexplained.com/wp-content/uploads/version_control/distributed/centralized_example.png
http://betterexplained.com/wp-content/uploads/version_control/distributed/centralized_example.png

CVCS Implementation: SVN

 Storage
 Central repository, working copy

 Protection
 Commit access

 Identification
 Sequence number

 Documentation
 Log message, timestamp, author

(Pilato, et. al., 2008)

Branches in SVN

 Create is a server-side copy

 All branches visible to all developers

 Merge is difficult

 Must linearize history (Pilato 2008)

 Renames present problems (O’Sullivan 2009)

A B

C E

D F

G

Centralized Model Problems

 All commits visible to all developers
(O’Sullivan 2009)

 vader593 runs svn update; make

 vader593 walks away to get coffee

 vader593 comes back to a build error

 What happened?

 admiral494 committed a bad one-line change

Centralized Model Problems

 Conflicts detected after commit attempt
(O’Sullivan 2009)

From: pointyhairedboss

To: dilbert

A customer found a bug that we think is in
/deathstar/reactorcore.c. Could you please
look into it?

From: pointyhairedboss

To: asok

I’ve noticed that all the C files in
/deathstar/ contain TABs. I read somewhere
that TABs are bad. Could you please fix this?

Centralized Model Problem

Repository

Dilbert’s WC

Asok’s WC

reactorcore.c r41689

reactorcore.c
r41689

reactorcore.c
r41689
reactorcore.c
r41689*

reactorcore.c r41690

reactorcore.c
r41690

reactorcore.c
r41689*

Outline

 Why version control?

 Version control system concepts

 Version control system models
 Centralized (CVCS)

 Distributed (DVCS)

 Case Study
 CVCS to DVCS migrations

 A class submission system for group projects

 Conclusion

Distributed VCS (DVCS)

Image source: http://betterexplained.com/wp-content/uploads/version_control/distributed/distributed_example.png

http://betterexplained.com/wp-content/uploads/version_control/distributed/distributed_example.png
http://betterexplained.com/wp-content/uploads/version_control/distributed/distributed_example.png
http://betterexplained.com/wp-content/uploads/version_control/distributed/distributed_example.png

DVCS Implementation: git

 Storage
 Each developer has entire project history

 Identification
 SHA-1 hash

 Protection
 SHA-1 hashes, “Pull” model

 Documentation
 Log message, timestamp, author

(Chacon)

Indirection

Subversion Git

Working
Copy

Central
Repository

Working
Copy

Local
Repository

Central
Repository

Publishing Code Changes

Push Model Pull Model

Central
Repository

Push

Repository A Repository
B

Changeset

Pull

Local
Repository

Changeset

Local
Repository

Changeset
Push

Branches in git

 Can be implicit or explicit

 Lightweight

 Merging preserves tree structure

A B

C E

D F

G

Solutions to CVCS Problems

 CVCS problem:

 All commits visible to all developers (O’Sullivan
2009)

 DVCS solution:

 Each developer works on a separate branch

Solutions to CVCS Problems

 CVCS Problem

 Conflicts detected after commit attempt
(O’Sullivan 2009)

 DVCS solution

 Detected at merge time, not compile time

Outline

 Why version control?

 Version control system concepts

 Version control system models
 Centralized (CVCS)

 Distributed (DVCS)

 Case Study
 CVCS to DVCS migrations

 A class submission system for group projects

 Conclusion

de Alwis Case Study

 Brian de Alwis, Jonathan Sillito

 Study on various projects moving from CVCS
to DVCS

 Perl

 OpenOffice

 Python

 NetBSD

Reasons for Switching

 Developers without commit access

 “Simple automatic merging”

 “Improved support for experimental changes”

 Offline development

Outline

 Why version control?

 Version control system concepts

 Version control system models
 Centralized (CVCS)

 Distributed (DVCS)

 Case Study
 CVCS to DVCS migrations

 A class submission system for group projects

 Conclusion

Conclusion

Distributed version control system (DVCS)
such as git have many advantages that make
them much more scalable than centralized
version control systems (CVCS) such as
Subversion.

References

Chacon, Scott. “About Git.” Git: The fast version control system. 6 April 2011.
http://git-scm.com/about

de Alwis, Brian, and Jonathan Sillito. “Why are software projects moving from
centralized to decentralized version control systems?” 2009 ICSE Workshop on
Cooperative and Human Aspects on Software Engineering. pp. 36-39. 2009.

Laadan, Oren, et. al. 2010. Teaching operating systems using virtual appliances and
distributed version control. In Proceedings of the 41st ACM technical symposium
on Computer science education (SIGCSE '10). ACM, New York, NY, USA, 480-484.
DOI=10.1145/1734263.1734427 http://doi.acm.org/10.1145/1734263.1734427

O'Sullivan, Bryan. 2009. Making Sense of Revision-control Systems. Queue 7, 7,
Pages 30 (August 2009), 11 pages. DOI=10.1145/1594204.1595636
http://doi.acm.org/10.1145/1594204.1595636

Pilato, C. Michael, et. al. Version Control with Subversion, Second Edition. O'Reilly.
2008.

Torvalds, Linus. “Tech Talk: Linus Torvalds on git.” 14 May 2007. Online video clip.
YouTube.

http://git-scm.com/about
http://git-scm.com/about
http://git-scm.com/about
http://doi.acm.org/10.1145/1734263.1734427
http://doi.acm.org/10.1145/1594204.1595636

Questions?

