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Thesis

Distributed version control system (DVCS) 
such as git have many advantages that make 
them much more scalable than centralized 
version control systems (CVCS) such as 
Subversion.
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Development Teams

 Example: Imperial Software, Inc.

 Problem:

 Bugs cause code changes

 Code changes cause other problems



Effects of Code Changes

 “The amount of space to store the source 
code…may be several times that needed for any 
particular version.”

 “Fixes made to one version of a module 
sometimes fail to get made to other versions.”

 “When changes occur it is difficult to tell exactly 
what changed and when.”

 “When a customer has a problem it is hard to 
figure out what version he has.”

(Rochkind 1975)



Software Maintainers

 Example: Linus Torvalds

 Problems: (Torvalds 2007)

 Separating good changes from bad changes

 Merging other people’s changes

 Release management

 Need guarantee that code is valid/trustworthy
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Features provided by SCCS

 Storage

 Protection

 Identification

 Documentation

(Rochkind 1975)



Modern VCS Features

 Branches

 Independent subprojects

 Release branches vs. Feature branches

 Merging

 Re-integrating a branch

(O’Sullivan 2009)
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Centralized VCS (CVCS)

Image source: http://betterexplained.com/wp-content/uploads/version_control/distributed/centralized_example.png
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CVCS Implementation: SVN

 Storage
 Central repository, working copy

 Protection
 Commit access

 Identification
 Sequence number

 Documentation
 Log message, timestamp, author

(Pilato, et. al., 2008)



Branches in SVN

 Create is a server-side copy

 All branches visible to all developers

 Merge is difficult

 Must linearize history (Pilato 2008)

 Renames present problems (O’Sullivan 2009)
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Centralized Model Problems

 All commits visible to all developers 
(O’Sullivan 2009)

 vader593 runs svn update; make

 vader593 walks away to get coffee

 vader593 comes back to a build error

 What happened?

 admiral494 committed a bad one-line change



Centralized Model Problems

 Conflicts detected after commit attempt 
(O’Sullivan 2009)

From: pointyhairedboss

To: dilbert

A customer found a bug that we think is in 
/deathstar/reactorcore.c.  Could you please 
look into it?

From: pointyhairedboss

To: asok

I’ve noticed that all the C files in 
/deathstar/ contain TABs.  I read somewhere 
that TABs are bad.  Could you please fix this?



Centralized Model Problem
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Distributed VCS (DVCS)

Image source: http://betterexplained.com/wp-content/uploads/version_control/distributed/distributed_example.png
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DVCS Implementation: git

 Storage
 Each developer has entire project history

 Identification
 SHA-1 hash

 Protection
 SHA-1 hashes, “Pull” model

 Documentation
 Log message, timestamp, author

(Chacon)



Indirection
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Publishing Code Changes
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Branches in git

 Can be implicit or explicit

 Lightweight

 Merging preserves tree structure
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Solutions to CVCS Problems

 CVCS problem:

 All commits visible to all developers (O’Sullivan 
2009)

 DVCS solution:

 Each developer works on a separate branch



Solutions to CVCS Problems

 CVCS Problem

 Conflicts detected after commit attempt 
(O’Sullivan 2009)

 DVCS solution

 Detected at merge time, not compile time
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de Alwis Case Study

 Brian de Alwis, Jonathan Sillito

 Study on various projects moving from CVCS 
to DVCS

 Perl

 OpenOffice

 Python

 NetBSD



Reasons for Switching

 Developers without commit access

 “Simple automatic merging”

 “Improved support for experimental changes”

 Offline development
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Conclusion

Distributed version control system (DVCS) 
such as git have many advantages that make 
them much more scalable than centralized 
version control systems (CVCS) such as 
Subversion.
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Questions?


