
Monads: Safe Side-effects
in Functional Programs

Patrick MacArthur
2011-03-07

Pure Functional Programming

 Biggest advantage: No side effects

 Easier debugging

 Lazy evaluation

Pure Functional Programming

 Biggest disadvantage: No side effects

 Input and output are side effects

 Some algorithms require global or local
state

Applications of Haskell

 GHC: most popular Haskell compiler

 xmonad: tiling window manager

 Darcs: distributed version control system

 List of ~50 companies using Haskell:

 http://haskell.org/haskellwiki/Haskell_in_industry

 Examples: Bank of America, Facebook, Google

 Real World Haskell

 Examples: barcode recognition, JSON parser

Source: O’Sullivan, Bryan, et.al.

http://haskell.org/haskellwiki/Haskell_in_industry
http://haskell.org/haskellwiki/Haskell_in_industry

Monads

 Motivation
 First use in computer science

 Early attempts at functional I/O

 Use in functional I/O
 Abstraction

 Advantages

 Use in state management
 Abstraction

 Implementation

 Advantages

Original Motivation

 Original idea presented in (Moggi, 1991)

 Formal reasoning about programs

 Trivial without side effects

 Most programs have side-effects

 Solution: monads/category theory

 Says nothing about implementation

Goal of Functional I/O

 f :: Int -> Int

 Cannot perform I/O, access network, access
anything in the universe except for its Int
argument

 f :: Int -> ____ Int

 Add something else that gives access to perform
I/O

Functional I/O: Dialogue

type Dialogue = [Response] -> [Request]

 Based on lists and recursion

 Function returns I/O requests

 Responses given in argument

 Problems

 hard to synchronize

 hard to compose multiple I/O actions in one
function

Source: Jones and Wadler

Functional I/O: Continuations

main :: Result -> Result

 I/O function

 Takes continuation function as argument

 Performs I/O

 Calls continuation function after completion

 Problem: every function is aware of this
model

Source: Jones and Wadler

Monads

 Motivation
 First use in computer science

 Early attempts at functional I/O

 Use in functional I/O
 Abstraction

 Advantages

 Use in state management
 Abstraction

 Implementation

 Advantages

What is a monad?

 Monads provide a context for actions

 Examples: getLine, print

 When performed, an action

 Possibly uses some side effect

 Returns value

 Actions may be composed (combined)

Source: Jones and Wadler

Input/Output in Haskell

main :: IO ()

main = do

name <- getLine

print $ "Hello, " ++ name

Goal of Functional I/O

 f :: Int -> Int

 Cannot perform I/O, access network, access
anything in the universe except for its Int
argument

 f :: Int -> IO Int

 Function in IO monad can perform I/O

Monads: unit/return function

someAction :: IO String

someAction = do

x <- getLine

return $ "Hello, " ++ x

Source: Jones and Wadler

Monads: bind (>>=) function

main :: IO ()

main =

getLine >>= main'

main' :: String -> IO ()

main' name =

print

$ "Hello, " ++ name

bind performs print action
returned by main’

bind passes “Waluigi” to main'

main' returns
print “Hello, Waluigi” action

bind performs getLine action

getLine returns “Waluigi”

Source: Jones and Wadler

Monad advantages

 Functional in nature

 Built into type system

 Cannot perform IO action outside an IO function

 Side effects are controlled

 Opaque

 Internals of IO hidden from user

 Eliminates boilerplate

 Bind absorb “continuation” code

Monads

 Motivation
 First use in computer science

 Early attempts at functional I/O

 Use in functional I/O
 Abstraction

 Advantages

 Use in state management
 Abstraction

 Implementation

 Advantages

State monad

 Allows hidden local state management

 Examples:

 Parser state: remaining text and line number

 Random number generator: seed

Source: O’Sullivan, Bryan, et.al.

Motivation: Random Numbers

pureRNG :: Int -> Int

-- Make two random numbers

main =

let x = pureRNG initSeed

y = pureRNG x

in print $ show x ++ "," ++ show y

Source: O’Sullivan, Bryan, et.al.

Better Random Numbers

nextRandom :: RNG Int

getTwoRandoms = do

x <- nextRandom

y <- nextRandom

return (x, y)

Source: O’Sullivan, Bryan, et.al.

Better Random Numbers

nextRandom :: RNG Int

twoRandoms :: RNG (Int, Int)

main =

let (x, y) = evalRNG twoRandoms initSeed

in print $ show x ++ "," ++ show y

Source: O’Sullivan, Bryan, et.al.

General State: Two issues

 How to transport state

 Usual monadic functions

 bind “glue” code

 How to transform state

 Actions: get and put

Source: O’Sullivan, Bryan, et.al.

State transformation

transform :: b -> (s -> (a, s))

 This function is curried

 Can separate into two functions

 Separate state transformation from computation

Source: O’Sullivan, Bryan, et.al.

State transportation

type State s a = s -> (a, s)

return x = \s -> (x, s)

m >>= f = \s -> let (x, s') = m s

in (f x) s'

Source: O’Sullivan, Bryan, et.al.

Initial State: runState

 Input

 action m

 initial state s

 Output

 final state

 output data

runState ::

State s a

-> s

-> (a, s)

runState m s = m s

Source: O’Sullivan, Bryan, et.al.

State transformation

 get: returns state as
value

get :: State s s

get = \s -> (s, s)

put: sets state to
passed-in state

put :: s -> State s ()

put s = _ -> ((), s)

Source: O’Sullivan, Bryan, et.al.

Monad advantages

 Built into type system

 Cannot perform state action outside context

 Side effects are controlled

 Opaque

 Internals of state mechanism hidden from user

 Eliminates boilerplate

 bind absorbs state management code

Conclusion

 Side effects essential to programming

 I/O is primary example

 Painful to debug

 Monads provide the solution

 Provide context for actions with side effects

 Allow composing actions

 Side effects cannot escape monadic context

References

“Haskell in Industry.” The Haskell Programming Language .
http://haskell.org/haskellwiki/index.php?title=Haskell_in_industry&o
ldid=38782

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative functional
programming. In Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL '93). ACM,
New York, NY, USA, 71-84. DOI=10.1145/158511.158524
http://doi.acm.org/10.1145/158511.158524

Eugenio Moggi. 1991. Notions of computation and monads. Inf. Comput.
93, 1 (July 1991), 55-92. DOI=10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4

O’Sullivan, Bryan, et.al. Real World Haskell. Sebastopol, CA: O’Reilley,
2009.

http://haskell.org/haskellwiki/index.php?title=Haskell_in_industry&oldid=38782
http://haskell.org/haskellwiki/index.php?title=Haskell_in_industry&oldid=38782
http://doi.acm.org/10.1145/158511.158524
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4

Questions?

