
Monads: Safe Side-effects
in Functional Programs

Patrick MacArthur
2011-03-07

Pure Functional Programming

 Biggest advantage: No side effects

 Easier debugging

 Lazy evaluation

Pure Functional Programming

 Biggest disadvantage: No side effects

 Input and output are side effects

 Some algorithms require global or local
state

Applications of Haskell

 GHC: most popular Haskell compiler

 xmonad: tiling window manager

 Darcs: distributed version control system

 List of ~50 companies using Haskell:

 http://haskell.org/haskellwiki/Haskell_in_industry

 Examples: Bank of America, Facebook, Google

 Real World Haskell

 Examples: barcode recognition, JSON parser

Source: O’Sullivan, Bryan, et.al.

http://haskell.org/haskellwiki/Haskell_in_industry
http://haskell.org/haskellwiki/Haskell_in_industry

Monads

 Motivation
 First use in computer science

 Early attempts at functional I/O

 Use in functional I/O
 Abstraction

 Advantages

 Use in state management
 Abstraction

 Implementation

 Advantages

Original Motivation

 Original idea presented in (Moggi, 1991)

 Formal reasoning about programs

 Trivial without side effects

 Most programs have side-effects

 Solution: monads/category theory

 Says nothing about implementation

Goal of Functional I/O

 f :: Int -> Int

 Cannot perform I/O, access network, access
anything in the universe except for its Int
argument

 f :: Int -> ____ Int

 Add something else that gives access to perform
I/O

Functional I/O: Dialogue

type Dialogue = [Response] -> [Request]

 Based on lists and recursion

 Function returns I/O requests

 Responses given in argument

 Problems

 hard to synchronize

 hard to compose multiple I/O actions in one
function

Source: Jones and Wadler

Functional I/O: Continuations

main :: Result -> Result

 I/O function

 Takes continuation function as argument

 Performs I/O

 Calls continuation function after completion

 Problem: every function is aware of this
model

Source: Jones and Wadler

Monads

 Motivation
 First use in computer science

 Early attempts at functional I/O

 Use in functional I/O
 Abstraction

 Advantages

 Use in state management
 Abstraction

 Implementation

 Advantages

What is a monad?

 Monads provide a context for actions

 Examples: getLine, print

 When performed, an action

 Possibly uses some side effect

 Returns value

 Actions may be composed (combined)

Source: Jones and Wadler

Input/Output in Haskell

main :: IO ()

main = do

name <- getLine

print $ "Hello, " ++ name

Goal of Functional I/O

 f :: Int -> Int

 Cannot perform I/O, access network, access
anything in the universe except for its Int
argument

 f :: Int -> IO Int

 Function in IO monad can perform I/O

Monads: unit/return function

someAction :: IO String

someAction = do

x <- getLine

return $ "Hello, " ++ x

Source: Jones and Wadler

Monads: bind (>>=) function

main :: IO ()

main =

getLine >>= main'

main' :: String -> IO ()

main' name =

print

$ "Hello, " ++ name

bind performs print action
returned by main’

bind passes “Waluigi” to main'

main' returns
print “Hello, Waluigi” action

bind performs getLine action

getLine returns “Waluigi”

Source: Jones and Wadler

Monad advantages

 Functional in nature

 Built into type system

 Cannot perform IO action outside an IO function

 Side effects are controlled

 Opaque

 Internals of IO hidden from user

 Eliminates boilerplate

 Bind absorb “continuation” code

Monads

 Motivation
 First use in computer science

 Early attempts at functional I/O

 Use in functional I/O
 Abstraction

 Advantages

 Use in state management
 Abstraction

 Implementation

 Advantages

State monad

 Allows hidden local state management

 Examples:

 Parser state: remaining text and line number

 Random number generator: seed

Source: O’Sullivan, Bryan, et.al.

Motivation: Random Numbers

pureRNG :: Int -> Int

-- Make two random numbers

main =

let x = pureRNG initSeed

y = pureRNG x

in print $ show x ++ "," ++ show y

Source: O’Sullivan, Bryan, et.al.

Better Random Numbers

nextRandom :: RNG Int

getTwoRandoms = do

x <- nextRandom

y <- nextRandom

return (x, y)

Source: O’Sullivan, Bryan, et.al.

Better Random Numbers

nextRandom :: RNG Int

twoRandoms :: RNG (Int, Int)

main =

let (x, y) = evalRNG twoRandoms initSeed

in print $ show x ++ "," ++ show y

Source: O’Sullivan, Bryan, et.al.

General State: Two issues

 How to transport state

 Usual monadic functions

 bind “glue” code

 How to transform state

 Actions: get and put

Source: O’Sullivan, Bryan, et.al.

State transformation

transform :: b -> (s -> (a, s))

 This function is curried

 Can separate into two functions

 Separate state transformation from computation

Source: O’Sullivan, Bryan, et.al.

State transportation

type State s a = s -> (a, s)

return x = \s -> (x, s)

m >>= f = \s -> let (x, s') = m s

in (f x) s'

Source: O’Sullivan, Bryan, et.al.

Initial State: runState

 Input

 action m

 initial state s

 Output

 final state

 output data

runState ::

State s a

-> s

-> (a, s)

runState m s = m s

Source: O’Sullivan, Bryan, et.al.

State transformation

 get: returns state as
value

get :: State s s

get = \s -> (s, s)

put: sets state to
passed-in state

put :: s -> State s ()

put s = _ -> ((), s)

Source: O’Sullivan, Bryan, et.al.

Monad advantages

 Built into type system

 Cannot perform state action outside context

 Side effects are controlled

 Opaque

 Internals of state mechanism hidden from user

 Eliminates boilerplate

 bind absorbs state management code

Conclusion

 Side effects essential to programming

 I/O is primary example

 Painful to debug

 Monads provide the solution

 Provide context for actions with side effects

 Allow composing actions

 Side effects cannot escape monadic context

References

“Haskell in Industry.” The Haskell Programming Language .
http://haskell.org/haskellwiki/index.php?title=Haskell_in_industry&o
ldid=38782

Simon L. Peyton Jones and Philip Wadler. 1993. Imperative functional
programming. In Proceedings of the 20th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL '93). ACM,
New York, NY, USA, 71-84. DOI=10.1145/158511.158524
http://doi.acm.org/10.1145/158511.158524

Eugenio Moggi. 1991. Notions of computation and monads. Inf. Comput.
93, 1 (July 1991), 55-92. DOI=10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4

O’Sullivan, Bryan, et.al. Real World Haskell. Sebastopol, CA: O’Reilley,
2009.

http://haskell.org/haskellwiki/index.php?title=Haskell_in_industry&oldid=38782
http://haskell.org/haskellwiki/index.php?title=Haskell_in_industry&oldid=38782
http://doi.acm.org/10.1145/158511.158524
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4
http://dx.doi.org/10.1016/0890-5401(91)90052-4

Questions?

